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Hello! My name is Thomas Sibley. I'm here today to talk about modern software development in a biology research lab.

http://www.perlconference.us/tpc-2017-dc/
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I work in the Mullins Molecular Retrovirology Lab at the University of Washington in Seattle.

https://mullinslab.microbiol.washington.edu/
https://uw.edu/


Wikipedia, Thomas Sple�stoesser

Molecular retrovirology means we look at viruses with RNA genomes and the interaction of these viruses with molecules
in the cell. We approach questions about the evolution of viruses and their interactions with human cells using a variety
of wet lab techniques at the lab bench and "dry lab" bioinformatics techniques at the computer. Each informs the other,
and often exploration of questions ping pongs back and forth between the two.





My responsibilities cover everything involving a computer in the lab, from analyzing data to writing new apps to
managing our racks of hardware. I've been in the lab for going on four years now and have helped modernize existing
applications and kick off new ones.



You've probably heard horror stories about the kind of spaghetti, write-only code that academic research produces, or
even worse, maybe you've looked at the BioPerl source code.

Ok, that's a cheap shot, but I'm here to tell you that not all software in science is terrible!



Act I: The Last MileAct I: The Last Mile
Act II: Improving the SituationAct II: Improving the Situation
Act III: Is this for you?Act III: Is this for you?
This will be a talk in three acts.

In the first act, I'll explore this idea of the last mile as I think it applies to software in science.

In the second act, I'll talk about the kind of work I do in the lab and show examples of improvements we've made to the
computing practices, viewed through the lens of lessons learned.

In the final act, I'll talk about why you too might want to work in a science lab.



Act IAct I

The Last MileThe Last Mile
� �

Let's get started.



The Mullins Lab has been around for 23 years at UW and for 12 years before that at Stanford and Harvard. That's a lot
of time to generate data! Some of the lab's ongoing projects span decades, with new data being collected from the start
up until now.

This plot shows the collection dates of samples that the lab manages and works with.



Evan Silberman

The success of those projects is directly related to the lab's ability to make sense of the data over time and not lose it to
the frequent turnover of students and postdocs or misplace it amidst shelves of lab notebooks.

Lab notebooks are an indispensible tool, but they don't scale.





Helping the lab make sense of data over the longer term and preserve it for future study is an in-house informatics
application called Viroverse.

This is a quick example of a detail page for a sample in the Viroverse system.

Bit rot is a real concern though, and having the data doesn't matter if the software for accessing it doesn't work well.



commit 47eca7460a6391be0bc532ab70e040736379439a 
Author: ████████████ <██████@uw.edu> 
Date:   Tue Oct 20 23:23:21 2009 +0000 
 
    synchronize Mercurial and CVS repositories 
 
159 files changed, 14093 insertions(+), 1416 deletions(-) 

When I first started, Viroverse didn't look like the previous picture. It used cobbled together YUI2 components
everywhere, was running on mod_perl, and using not just a homemade ORM but also Class::DBI and DBIx::Class. It
was version controlled in an unholy combination of centralized CVS and private Mercurial repositories.



��

commit 2a7d6c4bdab7993e0f1d3ac792545ba05b9e406c 
Author: █████████ <███████@uw.edu> 
Date:   Fri Nov 12 22:13:46 2010 +0000 
 
    (no message) 
 
41 files changed, 3015 insertions(+), 377 deletions(-) 

Over about a decade, various individuals had made their mark on the application. After a while you could pretty much tell
who wrote what by how the code looked and how well it functioned.

Most of the people in my position before me had come to the job with a background primarily in biology not software. The
development practices that had been used were years behind current best practices. Coming from an open-source and
commercial software background, I saw many opportunities for modernization. It was clear that many improvements in
the field, from better development tools to design practices to error handling to user experience, simply hadn't reached
the lab.

I don't attribute this to a lack of caring on the part of the folks before me. Rather, I think for reasons ranging from the
obtuseness of modern software stacks to the traditional funding structures in biology, that the advances in software and
computing just hadn't reached them yet.



High capacity, long distance conduits
Examples:

Tree trunks
Rivers
Arteries and veins
Power grid
Interstate highways
Intercontinental fiber

Examples:
Root hairs
Drip irrigation
Capillaries
Appliance cords
Back roads
User Internet access

Lower capacity, short distance conduits

Locally shared
costs

Widely shared
costs

Wikipedia, Dycedarg

There's this idea in telecommunications that's been applied more generally to providing any good or service: covering
the "last mile" of distance, i.e. to someone's home, is much harder than providing coverage up to that point. It's this "last
mile" that necessitates your distribution network (physical or virtual) leaf out immensely, seemingly immeasurably
compared to more concentrated service delivery points.



Mail services are a good example. Every day the US Postal Service touches, often literally, every mailbox in America.
USPS would be a much smaller business if it just had to get mail to regional distribution centers or even local post
offices. The difficulty and expense of bridging that "last mile" is the reason why private mail carriers like UPS and FedEx,
as they handled more and more packages with the rise of online shopping, started using USPS for final delivery. USPS
already had a "last mile" network because it's a much older organization that had the mandate to do so.



People People dodo care care

When I first started in the lab, I thought terrible software was just par for the course because no one cared as long as it
appeared to work once.

I now see it as a last mile problem. It's not that the field doesn't care about producing bad, error-prone code that
reinvents previously solved wheels, but that the field doesn't have access to modern practices and technology when it
comes to software and, more broadly, computing.



The tech industry is busy building gleaming, glistening towers up in the clouds. While it's busy "innovating" by putting
software in everything from toothbrushes to mugs, the industry doesn't seem to have much interest in actually trying to
advance other fields by bringing to them the bread and butter tech we've all had for a while now, like snappy, reactive
web apps.



If you feed the horse enough oats, some
will pass through to the road for the
sparrows.

—John Kenneth Galbraith
I don't see many people who I think of as tech ambassadors, people who try to keep one foot in tech and one foot in
another field and facilitate knowledge transfer. It seems that everyone thinks tech will just trickle down eventually. An
older name for trickle-down theory was horse-and-sparrow theory.

The tech industry is easy to blame, but it's not all its fault of course. Traditional funding structures in biology, for example,
can make it hard to competively hire professional developers. Generational and institutional biases often devalue staff
roles in science, making it harder to justify bringing in outside talent. Neither of these are universal, but they are
impediments that are slowing breaking down.

http://www.nybooks.com/articles/1982/02/04/recession-economics/


Act IIAct II

Improving the SituationImproving the Situation
� �

While I can't affect funding structures, I can help dispense with the myths that all software in science has to be terrible
and that the people writing it have to be trained scientists! Perhaps I can even pique your interest in bringing professional
software development to research science.





From day one, my goal was to improve the situation I found. I didn't know much about biology at the time, but I knew
what rotten software smelled like. The name of the game was to throw out what was rotten and keep what was sound,
then build from there. Since I didn't have a big picture of what the lab needed, I hoped that by relentlessly improving the
computing environment I would find ways to help out everyone.



# primerMatrix's tip is a commit which doesn't belong in time or 
# topology; make a new branch and correct the primerMatrix branch 
cd $(GIT); \ 
    git branch -m primerMatrix assembly-in-memory; \ 
    git branch primerMatrix assembly-in-memory~; \ 
    git rebase \ 
        --committer-date-is-author-date \ 
        --onto `git merge-base master assembly-in-memory` \ 
        primerMatrix assembly-in-memory; \ 
    git checkout master 
cd $(GIT); \ 
    ATTIC_FIXUP_START=`git log --format=%H --diff-filter=D -- mvc
    git filter-branch \ 
    --index-filter "bash $(PWD)/filter-fixup-attic $(PWD)/$(GIT) 
    --parent-filter "perl $(PWD)/filter-add-merge-parents" \ 
    --msg-filter "perl $(PWD)/filter-msg-cleanup" \ 
    --commit-filter '[[ -n `git rev-list $$GIT_COMMIT..start` ]] 
    --tag-name-filter cat \ 
    -- \ 
    --all \ 
        && git reset --hard master \ 
        && git for-each-ref --format="%(refname)" refs/original/ 
            | xargs -n1 git update-ref -d \ 
        && git reflog expire --expire=now --all \ 
        && git gc --prune=now 



Progress was slow at first. I spent about my first three weeks converting a mess of a global cvs repository to the best git
repository I could manage.

More weeks were spent improving the deployment infrastructure for Viroverse, the lab's primary web application, so that
I could deploy changes during working hours without accidentally eating someone's data they were in the middle of
inputting. Gradually, tangible improvements compounded and real progress was easier to make.

A year later, the results were good enough to convince my boss, Jim, to let me hire a coworker to work alongside me.
Since then, improvement's been much more rampant and together we've been able to feasibly tackle larger projects.



What Did We Learn?What Did We Learn?

Over these past years, I've learned a lot about how a lab works and how science works, and I want to share those
lessons and examples with you. These are lessons I remind myself of and try to work by, because often my default
reaction is the opposite. I think they give a nice glimpse into my day-to-day role where I strive to make excellent software
for scientists. The first is...



Enable people to useEnable people to use
be�er practicesbe�er practices

Enable people to use better practices. What I mean by this is that our work should make it easier for people to use best
practices rather than try to force them to do so.

A while back we had an issue in lab around how sequences were named. Scientists would generate sequences in the
wet lab, attach mostly standardized names, and upload them into our database, Viroverse. But when it came time to do
the analysis, instead of downloading the sequences en masse from Viroverse, people would collect all the data files from
dozens of personal folders on the shared file server.

This wasn't ideal because Viroverse was supposed to be the authority for our sequencing data. It was important to keep
the assigned accession number attached to sequences for data provenence, and sequences were also sometimes
revised in Viroverse without the data files on the file server being updated.



XXWI30123780XXx990414XXpXXXX12873660

The problem was that it was hard to find and download all the sequences you needed, and when you did, each
sequence was assigned a name that, as far as anyone was concerned, was just noise to them that got in the way during
analysis.

Names looked like this gibberish, which is an insane mix of fixed length fields with some variable length fields thrown in
the middle!

Since the sequences on the file server were more sanely named, people naturally opted to use those instead. Instead of
trying to enforce a policy, we made it easier to get sequences from Viroverse than to trawl the file server for them. First,
improved searching made it easier to get the batch of sequences you needed.



To replace a typically bad "advanced search" like this, which no one could use, I built...





...a faceted search interface which updates immediately when you click a facet value to start searching. It's immediately
graspable by playing around, and you don't have to already know what kinds of values you can search for. They're all
just shown! Faceted searching is one of those improvements that is all over the tech world, but that I rarely see outside
of it.

We're also using a slimmed down version of this same component to replace some data tables since it works nicely as a
general filter interface.



Crucially, now that people could find the sequences more easily, the download process also started letting you choose
how you wanted the sequences named.

This widget is pretty simple, but it's intuitive and super useful. You check off the fields you want in your sequence names,
you drag the fields around to set the order within the name, change the delimiter if you want, and off you go, with data
tailored to your needs.

More people started fetching sequences from Viroverse, with the assigned ids intact, and they didn't have to spend time
renaming sequences themselves via careful series of find-and-replace operations in TextWrangler.



Don’t collect data youDon’t collect data you
don’t plan to usedon’t plan to use

Don't collect data you don't plan to use.

While it's tempting to collect as many details as possible in the hope that it'll be useful someday, all it does in the short-
term is add work for everyone. Bench scientists already keep detailed lab notebooks, so it's not as if the data is gone
forever if you do find you need it later.

It also turns out that if you ask scientists to enter information that they know is never used, they won't bother to enter it
accurately. You might as well just stop collecting it, which will be easier for everyone.

We ran into this with our sequence upload workflow. Previously people were required to tediously "paint" a diagram of
how they were submitting their samples to the sequencing facility. This interface required repetitively dragging over the
diagram to specify up to dozens of values for each sample sequenced. After doing so, they still had to manually prepare
the same information in a different format for the sequencing facility.

When scientists eventually got back their sequencing results, they then had to upload the several dozen files and
manually drag-and-drop match them with the correct location on their diagrams. It was slow and error-prone and
ultimately collecting data that we didn't need. The result was that people fabricated their metadata diagrams in ways that
made the data input steps easier, rather than sticking to what they really did.





In the end, we replaced that part of the input workflow with this batch upload process incorporating heuristics for
automatic data matching.





After upload, all our scientists need to do now is review the automatic matches, fix any mistakes, and click save.

People were so appreciative of this change because we stopped wasting their time.



Data is useless if not inData is useless if not in
front of someone’s eyesfront of someone’s eyesData is useless unless it's in front of someone's eyeballs. When I first started, a lot of the data we had wasn't very visible

to the lab. I had access to it, if I knew it existed, and could pull it up on demand, but the lab didn't always know what data
we had or have the ability to see it.

Invisible data doesn't inspire questions and generate hypotheses. It doesn't register as available or pertinent when
planning analyses. Probably about a third of my overall job is thinking critically about how to best surface and present the
data we already have.

Scientists are naturally curious, and so if there's data in front of them, they'll look at it and ask questions of it. There are
all sorts of good ways to get data in front of people.

Many people dismiss data tables as boring and immediately reach for plots and charts and diagrams, but I'd take a
thoughtful, well-designed data table over a poorly thought-out visualization any day.

There are all kinds of data tables, and they adapt nicely to different needs and constraints.





You can start simple with a static but information-dense table for basic scanning. Sparklines are helpful for increasing
information density in this table, showing longitudinal data that otherwise wouldn't fit but is important when skimming the
table to find suitable study subjects.





From there you can add filtering and sorting by pertinent properties, and graphical labels for easier scanning.



As the data becomes more complex, you can present different views of the same data with a toggle.

These buttons convert the units in the table because different units are easier for some tasks than others. The raw units
are in total copies detected, but it's often useful to know the frequency of detection relative to the baseline.





Sometimes its nice to interactively link a table with a visualization so that people can flip between the two as they dig into
the data. The previous table and this plot of data are linked, so that selecting a curve in the plot selects the related data
in the table, and vice versa.



When a data table becomes unwieldy, like this all-scrolling, all-dancing horror, you can upgrade it directly to the
visualization and regain comprehension.





This is what is replacing that table, not only increasing information density but also clarity. And no more horizontal
scrolling!



Simple plots are a dime-a-dozen in science, but good visualizations integrate and synthesize lots of data in order to
highlight relationships within and between groups.

This viz compares the performance of the current experiment, highlighted, to related experiments, and is used for quality
control.



Bad visualizations are hard to digest and leave you wondering who thought this was a good idea. They're like a pizza
with too many toppings.



Good visualizations present the same data with clarity.



“Build just up to the“Build just up to the
edges”edges”

Designing and building research software is different than building a product to your vision. Research software must fit
into the workflows that already exist, by and large, outside of the computer and not dictate them.

You're modeling real-world steps that happen in experiments, things that experiments produce, and actions that people
perform. You don't typically get to decide what someone does at the bench, and so the challenges are different from
designing many software products or applications.

The software is in service to the science and scientific goals. The job is to save labor, not create it by imposing new
demands. My colleague Evan talks about this goal as "building right up to the edges of what researchers are already
doing."

Sometimes I like to think of it as...



"I won't touch what already works for you"



One of my concrete lessons in this was when building a data input widget for counts of cells.

This widget mimics the layout of the device used under a microscope to count alive and dead cells. Each quadrant gets
counted, and along with a volume and known dilution, the number of cells in the entire dish can be extrapolated.

I talked with the scientists a lot about the process of counting cells, and the steps and data involved. There were
mockups and sketches, and I designed the widget with the data entry task in mind. It supports a tally mode designed for
use with an external numpad where keypresses tally either live or dead cells and move between the quadrants. It's fully
operable with one hand, and even includes distinct audio feedback for the keys you've pressed so you know you hit the
right one. They could directly enter this data while they were collecting it! I was pretty pleased with the result.

After all that thought and effort though, it was barely used as intended. What went wrong? Well, see, the scientists are
recording these counts while in a biosafety level 3 lab space. They're in gowns and hats, goggles, and are wearing two
gloves on each hand. It's hot in the small, fully enclosed room. Counting cells is mundane and tedious and a lot of
microscope time, so they streamline the process with two people: one preparing the cells to count and the other
counting. Futzing with a laptop and software to do direct entry, even with the UX affordances was simply a non-starter.
The goal is to get in and get out as soon as possible. It's much much faster to use a physical clicker, like the kind at
movie theatres, and just scribble down numbers on a piece of paper as you go. The paper is easily transcribed to a
spreadsheet when they're done, in the comfort of their offices.





So what'd we do? Well, we removed nearly all of the specialized functionality for that widget, leaving just the bare bones
input form for cases when a single count needed to be added, and added a way to bulk upload counts from a
spreadsheet. This met the scientists on their own terms, right up to the edge of what they were already doing.



Evan Silberman

Another good example of this when we realized our scientists were hand labeling dozens of tiny stickers for every
experiment they did. Each sticker's label had to be different, making even using a Word template laborious.

In this photo, each white dot is a sticker on top of a small vial. That's not a giant marker, the stickers are just tiny!

These aren't the normal printable stickers you'd buy at OfficeDepot either. They're cryo-safe stickers which will stay stuck
to vials for years at minus 200°C (-328°F) while they chill out in the liquid nitrogen freezer.

While our scientists just buckled down to get the job done every time, it was obvious that we couldn't let that stand.





After only a couple days of hacking, testing, and discussing stickers, our scientists can now come to the lab's tissue
culture app, TCozy, and generate labels based on the relevant data for the experiment they're wrapping up and freezing
down.

Once they no longer had to worry about actually labeling the stickers themselves, they started suggesting improvements
like color coding the label text and creating a second sticker for each vial which contained additional information.



Evan Silberman

There's also this piece of paper in the background of the picture. That's a plate setup guide which our app produces to
help the scientists figure out what samples go where on 96-well plate. It matches the instrument setup files that our app
also generates. Taking a couple hours of our time to produce those automatically is saving the scientists many hours of
time in the long term and meets their workflows where they already are.



Learn to be comfortableLearn to be comfortable
adapting your modelsadapting your modelsResearch science moves rapidly, much more rapidly than most software development can keep pace with, and

especially so when the scientists are likely to outnumber the developers. Scientists will perform an experiment, learn
something from it, and rinse and repeat ad infinitum, tweaking not just variables but also abandoning and adopting entire
methods. You can't model every experiment. You can't capture all the data. You can't predict how the data being
produced will fundamentally change over time as the way it's generated changes.

Software for bench scientists is so close to the physical world that no simplified, abstracted model of that world survives
for very long before needing to be revised.

Because of this, I've learned to be comfortable making changes to our schemas, to be comfortable changing our object
models, and to always consider if the problem will be easier by first adapting the model to fit the new reality. All software
makes simplifications about the real world in order to make it tractable and understandable. Learn how to start simple
and grow more nuanced from there as the needs arise.

We've found some good tools and techniques to help cope with rapid schema changes.



App::SqitchApp::Sqitch
David Wheeler (THEORY)

sqitch.org

We use David Wheeler's sqitch to manage schema changes for our projects.

It organizes your schema changes into sets of deploy, revert, and verify scripts, with dependencies between your
changesets declared in a plan file. There's nice command-line tooling to manage changesets and apply them or roll them
back. The best part is that things like view definitions can be reworked in-place, leading to awesomely useful diffs in git.

It's pretty good, and I recommend it.

http://sqitch.org/


commit c3c755140031e1e8b80ece9a3c9b9bed992d503c 
Author: ████████ <███████@uw.edu> 
Date:   Wed Feb 9 23:36:37 2011 +0000 
 
    Moving in Freezer System Whoo Hooo 
 
    Requires the following DDL: 
 
    begin transaction; 
    CREATE SCHEMA freezer 
 
    -- DROP TABLE freezer.freezer; 
    CREATE TABLE freezer.freezer 
    ( 
      freezer_id serial NOT NULL, 
      "name" character varying(255) NOT NULL, 
      owning_scientist_id integer, 
      creating_scientist_id integer, 

It's certainly better than putting your database migration scripts in your commit messages.



JSON document store…JSON document store…

While sqitch is nice for bringing sanity to the process of making schema changes, sometimes you need the flexibility to
capture data before you can make the schema changes. Other times you want to capture data that's inherently variable
and annoyingly hard to model relationally.

A JSON document store is a great option for this, but we didn't want another database service and we did want the
documents themselves to tied to relational objects...



JSON document store…JSON document store…
in Postgresin Postgres

...so we use Postgres! We've found it works really well, and results in a very nice combination of flexibility without
throwing out all relational integrity or adopting a fully destructured object-key-value relational table. It's easy to start using
and provides straightforward upgrade paths to proper relational tables (managed with sqitch) once you're far enough
along to know what's worth refactoring into the relational model and what's not.

It's also fast! The native JSON types in Pg are indexable and work well. You can even add CHECK constraints to do
basic JSON document validation. The documents are manipulatable and traversable in SQL when you need it, which
makes ad-hoc queries easy.



CREATE VIEW tcozy.cell_counts AS 
SELECT 
    observation_id, 
    exp.name                                          as experime
    exp.experiment_id                                 as experime
    tcp.name                                          as tc_plate
    tcw.name                                          as tc_well, 
    tpt.day                                           as tc_day, 
    ( document#>>'{total,volume}' )::numeric          as volume, 
    ( document#>>'{total,dilution_factor}' )::numeric as dilution_
    ( document#>>'{viable,count}' )::numeric          as viable_c
    ( document#>>'{viable,density}' )::numeric        as viable_d
    ( document#>>'{dead,count}' )::numeric            as dead_cel
    ( document#>>'{dead,density}' )::numeric          as dead_den
    ( document#>>'{total,count}' )::numeric           as total_ce
    ( document#>>'{total,density}' )::numeric         as total_de
    CASE WHEN (document#>>'{total,count}')::numeric != 0 THEN 
        round((document#>>'{viable,count}')::numeric 
            / (document#>>'{total,count}')::numeric 
            * 100, 2) 
    END                                               as viability
    username                                          as performe
FROM observation 
JOIN timepoint tpt                 USING (timepoint_id) 
JOIN experiment exp                   ON (tpt.experiment_id = exp



This also lets us create views designed for analysis that present the documents as flat tables joined into relevant rows,
meaning our data scientists don't have to know about the document structure or JSON operators in SQL.



package TCozy::Document::CellCounts { 
    extends 'TCozy::Document'; 
 
    has [qw[ viable dead total ]] => ( 
        is       => 'ro', 
        isa      => Doc["CellCounts::Count"], 
        coerce   => 1, 
        required => 1, 
    ); 
 
    has '+total' => ( 
        is => 'lazy', 
    ); 
 
    sub _build_total { 
        my $self = shift; 
        return TCozy::Document::CellCounts::Count->new( 
            ($self->viable->has_counts 
                ? (counts => [ 
                    pairmap { $a + $b } 
                        zip $self->viable->counts->@*, 
                            $self->dead->counts->@* ]) 
                : (count => $self->viable->count + $self->dead->c
            volume => $self->viable->volume, 
            dilution_factor => $self->viable->dilution_factor, 



Our DBIx::Class models have helper methods for searching and filtering on the JSON documents, and the document
columns themselves are automatically inflated to typed document classes so that we can constrain them on the
application side and work with them as first-class objects.

This approach also yields nice options for future schema upgrades when you realize that perhaps some of the JSON
data should be properly modeled. Since the data is already in the database, it's straightforward to write a migration script
(in sqitch of course) moving data out of JSON documents and into proper relational tables.

We use JSON documents in Pg in two primary ways:



tcozy=> \d tcozy.experiment 
                                   Table "tcozy.experiment" 
    Column     │  Type   │                             Modifiers  
───────────────┼─────────┼────────────────────────────────────────
 experiment_id │ integer │ not null default nextval('experiment_ex
 name          │ text    │  
 description   │ text    │  
 metadata      │ jsonb   │ 

1. As a column directly on a primary record, usually to hold variable metadata



tcozy=> \d tcozy.observation 
                                        Table "tcozy.observation" 
         Column          │  Type   │                              
─────────────────────────┼─────────┼──────────────────────────────
 observation_id          │ integer │ not null default nextval('ob
 document                │ jsonb   │ not null 
 performed_by_user_id    │ integer │ not null 
 timepoint_id            │ integer │  
 tissue_culture_plate_id │ integer │  
 tissue_culture_well_id  │ integer │  
 qpcr_plate_id           │ integer │  
Indexes: 
    "observation_pkey" PRIMARY KEY, btree (observation_id) 
    "observation_document_idx" gin (document) 
Check constraints: 
    "observation_document_has_type" CHECK (document ? 'type'::tex
    "observation_has_one_object" CHECK (COALESCE(tissue_culture_p

1. As an better object-key-value pattern, an object-document pattern if you will. The document table refers to objects by
real foreign keys, and can contain other metadata and relationships as necessary.

One tantalizing improvement to this approach that we may try in the future is using our application document models to
produce JSON Schemas and JSON Schemas to produce database CHECK constraints so that we can validate docs
regardless of how they enter the database.



Removing tedium makesRemoving tedium makes
space for new ideas andspace for new ideas and

improvementsimprovementsAnd finally, I think the most exciting and important lesson I've learned during my time in the lab is that when you remove
the tedium from people's work, you help make space for them to think up new ideas and improvements to their
workflows.

What's deemed reasonable, or even desireable, to do changes once tedious tasks vanish and people can think more
creatively about the bigger picture.

Many of us have likely encountered fundamental misunderstandings about what's easy to make the computer do and
what's hard. Every visible, successful example of automating away tedium is another example of how the computer can
work for someone and a closing of that gap of understanding. They can better relate the possibilities to their own tasks.
At first in lab I had to ask around for direct ways I could help people on their own work, but over time, people started
approaching us to ask about making some process they were doing faster or easier or less error-prone.



Act IIIAct III

Is this for you?Is this for you?
� �

So is this for you?

The field of biology has a dire need for people who can think computationally and write good software at all levels. The
field is currently grappling with how to build out these skills the last mile.

Currently demand vastly outstrips supply for computational skills in biology. There's a general consensus that the field
needs to, as a whole, incorporate more bioinformatics and software development training into undergraduate and
graduate biology curriculums. While this certainly must happen to a degree, it's a little like saying, "Well, to be a
successful mechanical engineer, you now also need a law degree." The disciplines and practices of bioinformatics and
software development are vast! While familiarity and literacy in both is a good goal, it's unreasonable to expect biology
students to start mastering multiple fields.

There's another strategy that I think should be part of the solution, that's starting to come around in the field: create staff
positions for and recruit professional software developers into research science. There are interesting and meaningful
problems to solve in biology and a different culture than the tech industry, both of which can be attractive selling points.



Learning new domains is fun
Lots of room to operate in
Fast pace

The rewards of working in a lab are many:

• You'll learn a new domain; scientists are happy to teach and explain.

• You'll be doing scientific research, where the problems are different than you're used to. There's broad space for your
own thoughts, decision making, implementation, and feedback.

• The pace is often fast and exciting. You can never keep up with bench scientists, whether they're working on a new
assay or churning through a rote set of experiments, thinking on your feet is necessary. You'll build "minimum viable
products" to start capturing data now and then refine it to allow ongoing analysis.



xkcd
As programmers who know Perl, you're well-poised to think in terms of both high-level applications and raw data
manipulation. You'll be able to deploy regular expressions to save the day.

https://xkcd.com/208/


CompassionateCompassionate
computingcomputing

You don't need a PhD to do this work, but you do need to have empathy and a determination to help others. I like to think
of it as "compassionate computing", or software for humans.



Thanks!Thanks!
Evan Silberman

Jim Mullins

 

� �

@trs
tsibley.net/talks/last‑mile‑software‑development/

That's all! I'd like to thank Evan Silberman, for his thoughts and conversations about these topics while we work, and Jim
Mullins, for his support and allowing me wide discretion in the lab.

And thank you for your attention! I'll take questions now.

https://twitter.com/trs
https://tsibley.net/talks/last-mile-software-development/

