
Git best practices and development hygiene

Thomas Sibley
Bedford Lab
3 August 2018

Making the most of
version control

Git vs. GitHub

What’s the
difference?

Git is an open-source program for tracking
and sharing changes to files.

GitHub is a commercial product which
provides a nice website for developing
software with git. It is the place we store our
central git repositories.

I want to lead off with some quick background which might be old hat to some but
maybe isn’t crystal clear to all, which is the difference between git and GitHub.

When you’re using the command-line to check your repo status, view the changes
you’ve made so far, commit your work, or pull down updates, you’re using git.

When you use the web browser to comment on a PR or browse some code, you’re
using GitHub. GitHub is where our central repositories live and where other people
find our code.

I’m mostly going to be talking about practices that apply generally to git, not just
GitHub. And while I’m focusing on git, the same principles apply to other version
control systems too.

Caveats These are my best practices.

…but they’re also not just mine.

Larger projects benefit more from heavier
process/practice than smaller projects.

These aren’t hard and fast rules.

I also want to lead with some caveats about what follows. The practices I’ll be talking
about are definitely based on my own experience with what works well, but I’m
certainly not the first to articulate them. There is a long history of thought about how
to improve the (often painful) process of writing software, and the practices I’ll be
talking about have fairly wide acceptance.

What I’ll be talking about especially applies to larger software projects with lots of
moving parts, like the Nextstrain ecosystem. While these practices apply to smaller
scripts and notebooks as well, the cost-benefit analysis is different and not as clear
cut.

All of which is to say that what’s to come aren’t hard and fast rules. They’re
guidelines and ways of thinking about version control that offer advantages to future
development and make it easier for outsiders to get started contributing to your
project. Use them in projects where it makes sense.

The Diff,
The Commit, and
The Log

These are the triumvirate of version control.

The Diff is Git’s description of what you
changed.

The Commit is your description of why a set
of changes were made.

The Log is Git’s record of when changes
were made.

(Describe each.)

I’m going to touch on each of these in turn and best practices for cultivating them.
Each builds upon the previous ones.

The Diff

Programming is
Writing

Draft, revise, cut, rinse, repeat

Don’t stop at the first thing that seems to work
— It may not work in all cases!
— It is probably not the clearest way to
— communicate the code’s intent.

Read and re-read your diffs frequently
 — You’ll notice improvements
— Hone them for clarity and correctness

“A programmer is ideally an essayist,
who works with traditional aesthetic and

literary forms as well as mathematical
concepts, to communicate the way that
an algorithm works and to convince a

reader that it is correct.”

—Donald Knuth, 1992

I came across this quote from Donald Knuth recently and quite liked it.

The Commit

Why not What

Summarize what changed briefly, and then
describe in detail why it changed and why
you made the choices you did.

The Diff describes in detail what changed,
but only you can describe why!

Good commit messages are a love letter to
the future.

Avoid git commit -m. Configure git to use
your text editor instead.

(Why good commit messages are so important.)

Empowering the log.

The future will often be you, 6 months later, trying to figure out why you did something
6 months ago.

Summarize changes in around 70-80 characters

More detailed explanatory text, if necessary.

Explain the problem that this commit is solving.

Focus on why you are making this change. Are there

side effects or other unintuitive consequences of

this change? Here's the place to explain them.

 - Bullet points are okay, too…

 - …if they’re not just enumerating unrelated

 changes

Links to further discussion that informed this

commit can be useful. If you use an issue tracker,

put references to them at the bottom, like this:

Resolves: #123

See also: #456, #789

🚩 “Also, …”

🚩 “While I was at it…”

🚩 Whole message is a
 bulleted list

The Commit

Split up your
changes

Don’t lump changes together simply
because they happened close in time.

Commits should be discrete, cohesive
chunks with a clear purpose.

Make commits incrementally, even from
work done simultaneously.

git add --patch

git commit --patch

git rebase --interactive

The Log

The past is the key
to the present

xkcd.com/1296/

Charles Lyell, Scottish Enlightenment (18th-19th century)

Importance of history

This is a rather extreme example of a poorly tended git log from XKCD to get a laugh,
but poorly tended logs don’t have a clear sense of direction. A good log should tell a
story. This is different from your train of thought while hacking on code, where there
are dead ends and distractions along the way. Using the commands from the previous
slide you can craft that story after the fact, once you’ve done the work and know how
the story should end.

https://xkcd.com/1296/

The Log

The present is the
key to the future

Tending to a good Log now is an investment
in the future.

Why does this code do something
confusing?

Do we still need this bit of code? Why was it
added?

git bisect

git blame (yes, it’s a bad name)

Writing good commits now and tending to a clean log is an investment in the future
and the only way to get to a useful history.

There are many git commands which rely on a useful history, such as bisect for
automatically finding when a bug or behaviour started happening or blame/annotate
for tracing the origin of a bit of code.

The messier a log is, the less useful it is, and so there’s less reason to tend to it. But
investing in a good log will provide a valuable tool for longevity in a software project.

Code review

👀

Comparable to asking someone to read your
draft before you send it off

Different eyes see different things

Review process improves outcomes for
everyone, not just “newbies”

Any requested changes should be
incorporated directly into your existing
commits, not as new commits on top.

One way to improve on all of these things I’ve talked about is via code review. This
comes back to the Programming is Writing philosophy. Code review is just like asking
someone to read your draft of a manuscript. Can they follow the story you’re trying to
tell? Do they understand why things happened? Importantly, just like editing a
manuscript, the code review process is for everyone; it’s beneficial to experts as well
as newbies.

(Material on slide)

When working on a document, you don’t tack on edits at the end, you incorporate
them into the body of work. Your code should be no different.

Code smells

💩

Copies of files/code to preserve old versions
— Defeats point of version control
— Barrier to understanding what’s in use

Dead code / commented out code
— If it’s not in use, delete it!
— Comments are explicatory material,
— not version control methods

Generic variable names (“item”, “object”)
— Like using too many pronouns in
— English, it reduces clarity

👉 blog.codinghorror.com/code-smells/

One thing that comes up in review can be code smells. Code smells are things that
are indicative of poor development practices. They often don’t affect current
functionality, but they hinder development and future changes, often by decreasing
clarity or flexibility or increasing the frequency of bugs.

XXX TODO

The link has a reasonable list of many common code smells, but know that code
smells are very subjective and variable project-to-project. For example, in a
combined code plus data repo for a manuscript, it may be completely justified to use
multiple copies of files as a way to have side-by-side versions of a dataset or
resultset.

https://blog.codinghorror.com/code-smells/

“Move fast and
“break things”

“We used to have this famous mantra. [The
idea] is that as developers, moving quickly is
so important that we were even willing to
tolerate a few bugs in order to do it. What
we realized over time is that it wasn’t
helping us to move faster because we had
to slow down to fix these bugs and it wasn’t
improving our speed.”

—Mark Zuckerberg, 2014

mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability

https://mashable.com/2014/04/30/facebooks-new-mantra-move-fast-with-stability

“Take your time
“and do it right”

Aim for clarity and correctness above all
else. Code is read more often than written.

Paying attention to how diffs read, writing
good commit messages, and tending to the
log help others understand your changes.

Cut corners sparingly, and acknowledge
when you are doing so.

If there’s a mantra I’m more fond of, it might be “Take your time and do it right.”

Clarity and correctness are hard to come by, but they’re harder to beat. There’s a
time to cut corners in every project, but do it sparingly and only when necessary to
meet a real deadline.

This leads into my final point, which is…

Leave the code better than
you found it.

Leave the code better than you found it. Not just in what new things you add, but also
in fixing things along the way that you notice are broken or could be done better.

Rebasing:

What changed?

git tbdiff exists to show you what changed
between two versions of a topic branch.

git range-diff is the new, core version of
this!

Topic branch is a fancy term for a branch
that adds a feature or fixes a bug. It draws a
distinction between those short-lived
branches and branches that persist
indefinitely, like “master”.

👉 github.com/tsibley/git-tbdiff

https://github.com/tsibley/git-tbdiff

Further reading

chris.beams.io/posts/git-commit/

git-scm.com/book/en/v2/Git-Tools-Rewriting-History

git-scm.com/book/en/v2/Git-Tools-Reset-Demystified

sourcemaking.com/refactoring/smells

sourcemaking.com/refactoring/refactorings

https://chris.beams.io/posts/git-commit/
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History
https://git-scm.com/book/en/v2/Git-Tools-Reset-Demystified
https://sourcemaking.com/refactoring/smells
https://sourcemaking.com/refactoring/refactorings

